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Abstract

We provide an overview of recent research on the natural question
what makes a finite semigroup have finite or infinite identity basis. An
emphasis is placed on results published since 1985 when the previous
comprehensive survey of the area had appeared. We also formulate
several open problems.

This is an updated version of July 2014 of the original survey pub-
lished in 2001 in Sci. Math. Jap. 53, no.1, 171–199. The updates
(marked red in the text) mainly concern problems that were solved
meanwhile and new publications in the area. The original text (in
black) has not been changed.

Introduction

In his Ph.D. thesis [1966] Perkins proved that the 6-element Brandt monoid
B1

2 formed by the 2× 2-matrix units

(

1 0
0 0

)

,

(

0 1
0 0

)

,

(

0 0
1 0

)

,

(

0 0
0 1

)

,

together with the zero and the identity 2× 2-matrices, admits no finite set
of laws to axiomatize all identities holding in it [see also Perkins, 1969]. His
striking discovery strongly contrasted with another fundamental achieve-
ment of the equational theory of finite algebras which had appeared shortly
before: we mean Oates and Powell’s theorem [1964] that the identities of
each finite group are finitely axiomatizable. It was this contrast that gave
rise to numerous investigations whose final aim was to classify all finite
semigroups with respect to the property of having/having no finite identity
basis. Even though those investigations have not yet led to a solution to
this major problem, they have resulted in extremely interesting and often
surprising developments.

From the points of view of both the intensity and the depth of inves-
tigations, a definite peak was reached in the mid-80s. The achievements
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of that period were cumulated in the survey paper [Shevrin and Volkov,
1985]1; many of them had been first announced in that survey and only
then appeared in journals in a full form. There are some indications of a
new peak that we are approaching at the moment due to contributions of the
next generation of researchers. Therefore the time seems to be appropriate
for another attempt to survey the area, to say nothing of the millennium
edge which naturally provokes one to compile an account of what has been
already achieved and what is still to be done.

The present paper is however not a mere continuation of Survey-85.
First of all, it is less ambitious concentrating entirely on the finite basis
problem for finite semigroups, while Survey-85 intended to cover the whole
area “Identities of semigroups”. Further, since the English version of Survey-
85 is not easily accessible and the quality of the translation is rather bad,
we have decided to make the present survey, to a reasonable extent, self-
contained even though this has caused a few overlaps with Survey-85.

The paper is structured as follows. Section 1 gives an overview of neces-
sary prerequisites. In Section 2 we recall the main open problems of the area.
In order to create a feeling as to why the problems are so difficult to handle,
we collect in Section 3 a few facts that demonstrate the extremely irregular
behaviour of the class of finite semigroups with a finite identity basis with
respect to almost all standard constructions and operators of semigroup the-
ory. This section is based on Survey-85, Section 11, but we provide several
references which were not available when Survey-85 appeared. The core of
the paper is Section 4. There we analyze the methods developed for find-
ing finite semigroups without a finite identity basis. It is the subarea that
advanced most over the last couple of years. We give a classification of the
methods and then present several recent results (of which some are not yet
published). Section 5 is devoted to the opposite question: how to prove that
a given finite semigroup has a finite basis. Finally, in Section 6 we list a few
series of finite semigroups for which the finite basis problem appears to be
of importance for further developments but resists the methods known so
far.

A preliminary version of this survey has been presented in the author’s
lecture at the International Conference on Semigroups held in Braga in June
1999. In an expanded form, the lecture has appeared in the paper [Volkov,
2000] which contains also a few new results with full proofs. These proofs
have been excluded from the present version of the survey in order to free
space for a considerable amount of material not covered in [Volkov, 2000].

1In what follows we shall refer to this paper simply as to Survey-85.
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1 Preliminaries

As far as semigroups are concerned, we adopt the standard terminology and
notation from [Clifford and Preston, 1961,1967; Lallement, 1979; Howie,
1995]. Our main source for universal algebra notions is [Burris and Sankap-
panavar, 1981]. We recall some of those notions adapting them to the semi-
group environment.

Let A be a countably infinite set called an alphabet. We will assume
that A contains the letters x, y, z with and without indices. As usual, we
denote by A+ the free semigroup over A , that is, the set of all words over
the alphabet A with word concatenation as the multiplication operation.
Sometimes it is convenient to adjoin the empty word 1 to A+ thus obtaining
the free monoid A∗ . By ≡ we denote the equality relation on A∗ .

A non-trivial semigroup identity over A is merely a 2-element subset
{u, v} ⊂ A+ usually written as u = v . A semigroup S satisfies the identity
u = v if the equality uϕ = vϕ holds in S under all possible homomorphisms
ϕ : A+ → S . Given S , we denote by IdS the set of all non-trivial semigroup
identities it satisfies.

Given any collection Σ of non-trivial semigroup identities (an identity

system, for short), we say that a non-trivial identity u = v follows from Σ or
is a consequence of Σ if every semigroup satisfying all identities of Σ satisfies
the identity u = v as well. The following well-known completeness theo-

rem of equational logic first discovered in Birkhoff’s pioneering paper [1935]
provides a syntactic counterpart to this important notion:

Proposition 1.1. A non-trivial semigroup identity u = v follows from an

identity system Σ if and only if there exist w0, w1, . . . , wk ∈ A+ such that

u ≡ w0 , v ≡ wk and, for every i = 0, 1, . . . , k − 1, there are ai, bi ∈ A∗ ,

si, ti ∈ A+ and an endomorphism ζi : A
+ → A+ such that wi ≡ ai(siζi)bi ,

wi+1 ≡ ai(tiζi)bi and the identity si = ti belongs to the system Σ .

For an identity system Σ, we denote by IdΣ the set of all consequences
of Σ. Given a semigroup S , an identity basis for S is any set Σ ⊆ IdS such
that IdΣ = IdS or, in other words, such that every identity of IdS follows
from Σ. A semigroup S is said to be finitely based if it possesses a finite
identity basis; otherwise S is called nonfinitely based.

Let us briefly discuss an interesting subtlety which arises here. Since we
are going to focus on identities of finite semigroups, it appears to be rather
natural to restrict the definitions above to the class S of all finite semi-
groups. Thus, we could say that an identity u = v follows within S from a
system Σ if u = v holds in every finite semigroup satisfying Σ, and we could
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then call a finite semigroup S finitely based within S if every identity of IdS
follows within S from a finite subsystem Σ ⊆ IdS . For general algebras
and even for groupoids, the problem of whether or not being finitely based
within the class of finite algebras is equivalent to being finitely based in the
standard sense is still open. Fortunately, for semigroups the two concepts of
the finite basability (“absolute” and within S) turn out to coincide as was
shown by M. Sapir [1988]. It does not mean, however, that the “absolute”
notion of a consequence of an identity system is equivalent to its “finite”
counterpart! The following example by Churchill [1997] illustrates this:

Example 1.1. The identity x3yz3x2 = (yx)3zx3(yx)2 does not follow from
the identity system Σ = {x5 = y5, x3yz3x = (yx)3zx3yx}, but follows from
Σ within the class of all finite semigroups.

A similar remark can be made about the relationship between the finite
basis properties of a finite monoid M as an algebra of type 〈2, 0〉 and as a
semigroup: M is finitely based within the class of all monoids if and only if it
is finitely based in the standard sense, that is, in the class of all semigroups2.
As above, this does not mean the equivalence between the “monoid” and the
“semigroup” notions of a consequence of an identity system: for instance,
xy = xz implies y = z in any monoid, but not within the class of all
semigroups. Analogously, for finite semigroups with zero, treating them as
algebras of type 〈2, 0〉 does not influence the class of finitely based objects
(even though it again changes the meaning of a consequence: the same
identity xy = xz implies the identity xy = yz in any semigroup with zero).

Given a semigroup S , the class of all semigroups satisfying all identities
from IdS is the variety generated by S ; we denote this variety by Var S .
By the classic HSP-theorem by Tarski [1946], Var S = HSP(S) where H , S ,
P are respectively the operators of taking homomorphic images, subsemi-
groups, and direct products. We call a variety finitely generated if it is
generated by a finite semigroup.

We will encounter also the operator Pfin of taking finitary direct prod-
ucts. Recall that a semigroup pseudovariety is a class of finite semigroups
closed under H , S , and Pfin . The theory of pseudovarieties has its own
variant of the finite basis problem based on the notion of a pseudoidentity,
see [Almeida, 1994]. Fortunately again, when applied to a single finite semi-
group, this version of the finite basability also reduces to the standard one:
a finite semigroup S possesses a finite pseudoidentity basis if and only if S
has a finite identity basis [Almeida, 1989, 1994, Corollary 4.3.8].

2We are not sure that this claim and the next one, concerning with finite semigroups
with zero, have been explicitly made in the literature, but they can be easily verified.
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2 General problems

As was said in the introduction, an ultimate solution to the finite basis prob-
lem for finite semigroups would consist in a method to distinguish between
finitely based and nonfinitely based finite semigroups. In more precise terms,
since any finite semigroup S is an object that can be given in a constructive
way (by its Cayley table, say), what we seek is an algorithm which when
presented with an effective description of S , would determine whether S has
a finite identity basis. This formulation of the finite basis problem as a deci-
sion problem is due to Tarski who suggested it in the early 60’s in the most
general setting, that is, for the class of all finite algebras [see Tarski, 1968].
We will refer to the restrictions of that general problem to various concrete
classes of finite algebras (say, groupoids, semigroups, etc) as Tarski’s prob-
lems for groupoids, semigroups, etc. With this convention, we may say that
the research reported in the present survey groups around Tarski’s problem
for semigroups. Let us formulate the latter problem explicitly:

Problem 2.1. (Survey-85, Question 8.3; Sverdlovsk Notebook-89, Question
3.51) Is there an algorithm that when given an effective description of a finite

semigroup S decides if S is finitely based or not?

Problem 2.1 is still open. We mention that, in contrast, Tarski’s problem
for groupoids has been recently solved in the negative by McKenzie [1996].

An algorithm is known to decide whether the semigroup identities of a
finite inverse semigroup S possess a finite basis [Volkov, 1985]. It is based
on the fact that S is finitely based if and only if the Brandt monoid B1

2

does not belong to the variety Var S (it follows from the proof of the HSP-
theorem that the latter condition can be algorithmically tested when given
the Cayley table of S [see, e.g., Almeida, 1994, Section 4.3]). The “if” part
was established in [Volkov, 1985], while the “only if” part is a consequence
of M. Sapir’s results [1987b] which we discuss in Subsection 4.4.

Here is the appropriate place for an important warning: the above al-
gorithm does not yet provide a solution to the Tarski problem for inverse
semigroups as algebras of type 〈2, 1〉 . Even though it follows from a com-
parison between [Volkov, 1985] and [E. Kleiman, 1977] that the “inverse”
(that is, of type 〈2, 1〉) identities of a finite inverse semigroup are finitely
based whenever its “plain” (of type 〈2〉) identities are, as yet we do not know
whether the converse holds true. It was claimed in Survey-85, see p.19 of the
English translation, that the “inverse” and the “plain” identities of every
finite inverse semigroup are simultaneously finitely based. This claim, based
on an announcement by M. Sapir, had spread out and had even penetrated
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into the handbook [Shevrin, 1991]. Later Sapir [1993] discovered that the
announced result was wrong, and therefore, the question of the equivalence
between the two versions of the finite basability of finite inverse semigroups
should be treated as open. We note that for infinite inverse semigroups
(in fact, even for infinite groups) the properties of being finitely based as
semigroups and as algebras of type 〈2, 1〉 are known to be independent: the
group 〈a, b | ab2a = 1〉 whose group identities are based by the single law
x2y2 = y2x2 is nonfinitely based as a semigroup [Isbell, 1970; Shneerson,
1984], while the wreath product of any infinite relatively free group of expo-
nent 4 with the countably generated free abelian group is nonfinitely based
as a group [Ju. Kleiman, 1973] but satisfies no non-trivial semigroup iden-
tity [Belyaev and Sesekin, 1981] whence this product is finitely based as a
semigroup.

Question 8.2 in Survey-85 asks if the algorithm from [Volkov, 1985] ex-
tends to finite orthodox semigroups. Though this question still remains
open, very recently Jackson [1999, 2002] has observed that the algorithm
can be used to decide whether a given finite orthodox monoid is finitely
based. In this connection, it is also worth mentioning that every finite com-
pletely regular orthodox semigroup is finitely based [Rasin, 1982].

Kad’ourek [2003b] has answered the above question in the negative.
Namely, he has constructed a nonfinitely based finite orthodox semigroup
S such that eSe is a band for every idempotent e ∈ S . The last property
guarantees that the Brandt monoid B1

2 does not belong to the variety Var S .

Apart from purely algebraic motivations for studying finite semigroups,
they are of serious interest from the point of view of formal language theory
where they arise as syntactic semigroups of rational (in another terminol-
ogy, regular) languages. For completeness’ sake, let us briefly recall the
corresponding notions referring to [Lallement, 1979, Chapter 6] for details.

A language in A+ or A∗ is merely another name for an arbitrary subset
in A+ or respectively A∗ . A language in A+ is called rational if it may
be obtained from the singleton subsets in A and the empty set by applying
a finite number of times the unary operation of generation of the subsemi-
group and the binary operations of subset multiplication3 and set-theoretical
union. The definition of a rational language in A∗ differs only in involving
generation of the submonoid rather than the subsemigroup.

Given a language L ⊆ A+ , we define the relation σL on A+ by

uσL v if, for any x, y ∈ A∗ , xuy ∈ L⇐⇒ xvy ∈ L.

3For subsets L,K ⊆ A+ , their product is the set LK = {uv | u ∈ L, v ∈ K} .
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Then σL turns out to be a congruence on A+ (in fact, it is the largest
congruence on A+ for which L is a union of classes). The quotient semi-
group A+/σL is called the syntactic semigroup of the language L . In exactly
the same way, one defines the syntactic monoid of a language in A∗ .

The syntactic semigroup or monoid of a rational language L in A+ or
respectively A∗ is necessarily finite; the converse is also true provided that
only finitely many letters occur in words from L—this is a form (due to
Myhill [1957]) of Kleene’s famous theorem [1956].

In the light of this correspondence, it is rather natural to ask which com-
binatorial properties of a rational language ensure that its syntactic semi-
group or monoid is finitely based. Almost nothing is known in this direction
so far, and the question appears to be very difficult even when restricted
to singleton languages (see Subsection 4.2 below). Let us formulate it as a
decision problem in the flavour of Problem 2.1.

Problem 2.2. Is there an algorithm that when given an effective descrip-

tion of a rational language L (by a rational expression, say) decides if the

syntactic semigroup [or monoid ] of L is finitely based or not?

Since there exist algorithms that calculate the syntactic semigroup or
monoid of a rational language from its given constructive presentation, the
problem of recognizing “finitely based” rational languages in A+ or A∗ can
be treated as just the Tarski problem for syntactic semigroups or respectively
syntactic monoids. We note that this restricted Tarski problem seems to be
quite close to the general Tarski problem for semigroups [monoids] because
every finite semigroup [monoid] is a subdirect product of syntactic ones
[see, e.g., Almeida, 1994, Proposition 0.3.2]. However, since neither of the
properties of being finitely based/nonfinitely based is stable under forming
of subdirect products (see Section 3 below), we do not yet know if the two
problems are equivalent. We may only claim that a negative solution to
Problem 2.2 would also answer Problem 2.1 in the negative.

Jackson [2005a] has proved that Problems 2.2 and 2.1 are equivalent;
moreover, they are polynomially equivalent in the following sense: given
a finite semigroup (or monoid) S , one can construct a finite syntactic semi-
group (or monoid) S′ whose size does not exceed |S|2 such that S′ is finitely
based if and only if so is S .

From the varietal point of view, Tarski’s problem is the problem of an
algorithmic selection of finitely based varieties among finitely generated ones.
It is also very natural to ask a “reverse” question in which one looks for an
algorithm to select finitely generated varieties among finitely based ones.
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This problem was also proposed by Tarski [1968], again for general algebras.
It was solved in the negative by Perkins [1966, 1967] and Murskǐı [1971]; the
latter proved that even in type 〈2〉 there is no algorithm to determine if a
given finitely based variety is generated by a finite groupoid. When further
specialized to semigroups, the problem however remains open. Here is its
explicit formulation:

Problem 2.3. [Survey-85, Question 8.4] Is there an algorithm that, given

a finite identity system Σ , decides if IdΣ = IdS for a finite semigroup S ?

An algorithm is known when the system Σ contains the commutative
law xy = yx [O. Sapir, 1997], and even this case is far from being trivial. It
would be interesting to know if this algorithm extends to the case when Σ
contains a permutation identity, that is, an identity of the form

x1x2 · · · xn = x1πx2π · · · xnπ (1)

where π is a non-identical permutation on the set {1, . . . , n}.
Recently O. Sapir [2009] has succeeded in mastering an algorithm that,

given a finite identity system Σ containing a permutation identity, decides if
IdΣ = IdS for a finite semigroup S . The algorithm is much more involved
than the one for the commutative case.

Returning to the problem of distinguishing between finitely based and
nonfinitely based finite semigroups, we may ask what happens “on average”
if one picks a random finite semigroup S . It turns out that such a semigroup
is very likely to be finitely based. To formulate this claim in precise terms,
we denote by FBS(n) and NFBS(n) the numbers of respectively finitely
based and nonfinitely based semigroups with n elements. Then the ratio
NFBS(n)

FBS(n)
tends to 0 as n tends to infinity. The reason for that is rather

simple: it is known [see Kleitman et al., 1976] that the ratio of the number
of 3-nilpotent semigroups with n elements to the number of all semigroups
with n elements tends to 1 as n tends to infinity, and it is easy to see that
every nilpotent semigroup is finitely based. One may want to exclude the
trivial case of nilpotent semigroups by switching to monoids, but it makes no
real difference: if FBM(n) and NFBM(n) denote respectively the numbers
of finitely based and nonfinitely based monoids with n elements, then again

lim
n→∞

NFBM(n)

FBM(n)
= 0. The reason for that is similar to the semigroup case:

on one hand, as was shown in [Koubek and Rödl, 1985], almost all monoids
with n elements are of the form S1 where S is a 3-nilpotent semigroup; on
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the other hand, each monoid of this form satisfies the identity xyx = x2y ,
whence it is finitely based by a result from [Pollák and Volkov, 1985].

Since we know that both
NFBS(n)

FBS(n)
and

NFBM(n)

FBM(n)
are infinitesimals

as n tends to infinity, the next natural step is to estimate the order of
these infinitesimals. For groupoids, Murskǐı [1979] has proved that the ra-

tio
NFBG(n)

FBG(n)
is asymptotically equal to n−6 (where, clearly, FBG(n) and

NFBG(n) denote respectively the numbers of finitely based and nonfinitely
based n-element groupoids). Having in mind an answer of a similar flavour,
we formulate

Problem 2.4. [Survey-85, Question 8.5] What is the asymptotic behaviour

of the ratios
NFBS(n)

FBS(n)
and

NFBM(n)

FBM(n)
as n tends to infinity?

We can also approach the finite basis problem for a random finite semi-
group from a different angle. In the definition of the functions FBS(n)
and NFBS(n) above, we have counted finite semigroups up to isomorphism.
However, as long as we are interested in an equational property, it appears
more natural to count them up to equational equivalence. (Recall that two
semigroups are said to be equationally equivalent if they satisfy the same
identities or, in other words, if they generate the same variety.) This suggests
considering a new pair of functions: the numbers FBV(n) and NFBV(n)
of respectively finitely based and nonfinitely based varieties generated by
semigroups with n elements. Here there is no obvious reason to expect
that an “average” finite semigroup is finitely based. For example, the mob
of 3-nilpotent semigroups that previously spoiled the situation so much is
not influential anymore because only 4 varieties can be generated by a 3-
nilpotent semigroup. Thus, the following problem (suggested to the author
by Jackson) seems to yield the correct version of the “randomized” finite
basis problem:

Problem 2.5. Evaluate lim
n→∞

NFBV(n)

FBV(n)
.

Of course, the monoid version of Problem 2.5 is of equal interest.

The last of the general problems which we want to recall is related to
the notion of an irredundant identity basis. We say that an identity system
Σ is irredundant if IdΣ′ ( IdΣ for each proper subsystem Σ′ ( Σ. Clearly,
if a semigroup S has a finite identity basis, then S also has an irredundant
basis. The notion was invented soon after the first examples of nonfinitely
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based semigroups had arisen, in a hope that those “bad” semigroups could
retain at least this property of their “good” (that is, finitely based) relatives.
Unfortunately, the hope has proved to be too optimistic: not only are there
various examples of finite semigroups without an irredundant identity basis
[see Mashevitzky, 1983; M. Sapir, 1991; Kad’ourek, 1992], but moreover no
finite semigroup with an infinite irredundant basis is known so far. Now it
rather appears that the answer to the following question might be negative:

Problem 2.6. (Sverdlovsk Notebook-79, Question 2.51a; Survey-85, Ques-
tion 8.6) Is there a finite semigroup with an infinite irredundant identity

basis?

Jackson [2005b] has solved Problem 2.6 in the affirmative, and moreover,
he has shown that examples of finite semigroups with infinite irredundant
identity bases are rather plentiful. The simplest example in Jackson [2005b]
is the 9-element monoid S({xyxy}) that is discussed in some detail in Sub-
section 4.2 below. The problem however remains open in the monoid setting,
that is, we do not yet know if there is a finite monoid with an infinite ir-
redundant basis of monoid identities. All examples in Jackson [2005b] are
finite monoids but it is not likely that amongst them there exists one with
an infinite irredundant basis of monoid identities. Moreover, for some of
those examples, it has been explicitly proved in Jackson [2005b] that they
have an infinite irredundant identity basis as semigroups but no such basis
as monoids.

With respect to this problem, a result by Trahtman [1987] is worth
mentioning. Namely, he has proved that a 6-element semigroup possesses
an infinite irredundant identity basis within a certain variety of semigroups.
The 6-element semigroup that appears in this result is A1

2 , where

A2 = 〈a, b | aba = a2 = a, bab = b, b2 = 0〉

is the 5-element idempotent-generated 0-simple semigroup which can be
alternatively described as the semigroup formed by the following 2 × 2-
matrices:

(

0 0
0 0

)

,

(

1 0
0 0

)

,

(

0 1
0 0

)

,

(

1 0
1 0

)

,

(

0 1
0 1

)

.

The semigroup A2 as well as the 5-element Brandt semigroup B2 plays a
distinguished role in the theory of semigroup varieties, and we will meet it
again in this survey.
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3 Irregularities

Let FB denote the class of all finitely based finite semigroups. As we already
mentioned, this class is rather irregular in the sense that—up to very few
exceptions—FB is closed under no standard operator or construction. In
Table 1 (on the next page) we have collected a few references to results
revealing such irregular behaviour. Similarly, FB is not closed under taking
ideals or Rees quotients, forming 0-direct unions or ordinal sums, building
power semigroups, etc—cf. Survey-85, Section 11, for a detailed discussion.

Table 1: Semigroup constructions and operators vs. the finite basis property

An example of a nonfinitely based finite semigroup being:

the direct product of two finitely
based semigroups

can be found in [Volkov, 1989; M. Sapir,
1991; O. Sapir, 1997; Jackson, 1999];

a subsemigroup or a homomorphic

image of a finitely based finite semi-
group

follows from the example of a finitely
based finite semigroup being the direct
product of two nonfinitely based semi-
groups [see M. Sapir, 1991, Corollary 2.4];

the semidirect product or the wreath
product of two finitely based semi-
groups

can be found in [Irastorza, 1985; Almeida,
1991; Tishchenko, 1996];

a rectangular band of finitely based
semigroups

can be found in [Mashevitzky, 1984];

a right zero band or a left zero band

of finitely based semigroups
follows from the previous example, see
Survey-85, Section 11;

the monoid S1 for some finitely
based semigroup S

can be found in [Perkins, 1969];

a semilattice of finitely based semi-
groups or an ideal extension of a
finitely based semigroup by another
finitely based semigroup

follows from the previous example, see
Survey-85, Section 11.

As for the exceptional constructions which do preserve the finite basis
property, one of them is the mere adjoining 0 to a (not necessarily finite)
semigroup S . The fact that the semigroup S0 is finitely based whenever
S is immediately follows from a combination of two observations. The first
one is that S 6= S0 implies Var S0 = VarS ∨ SL , where SL stands for the
variety of all semilattices and ∨ denotes the varietal join4; this is easy and

4By the join X ∨ Y of two semigroup varieties X and Y we mean the least variety
containing both X and Y ; in other words, X ∨ Y = HSP(X ∪ Y) .
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well-known. The second observation is that, given a finite identity basis for
S , one can construct a finite basis for the join Var S ∨ SL ; this is due to
Melnik [1970].

Another “finite basis-friendly” construction is inflation: an inflation T
of a semigroup S is a subdirect product of S with a zero multiplication
semigroup whence Var T = Var S ∨ ZM , where ZM denotes the variety
of all zero multiplication semigroups. A specialization of another result by
Melnik [1973] (formulated in [Melnik, 1973] in the universal algebra setting)
shows how to construct a finite identity basis for the join Var S ∨ ZM
provided a finite basis for S . Therefore T is finitely based whenever S is.
As follows from [Volkov, 1984], this can be generalized in order to show that
any subdirect product of a finitely based semigroup with a nilpotent semi-
group is finitely based. In particular, every finite semigroup with a unique
idempotent is finitely based as being a subdirect product of a group with a
nilpotent semigroup [Volkov, 1984].

Lee [2014] has used the above result from [Volkov, 1984] to construct
finite semigroups S such that S is nonfinitely based while the monoid S1

is finitely based.

Since the class FB fails to be H-, S- or Pfin -closed, it is quite natural
to ask for a description of the closures of FB under the operators H , S ,
Pfin and their combinations. The following problem is especially intriguing:

Problem 3.1. What is the HSPfin -closure of the class FB , that is, the

pseudovariety generated by FB? In particular, is this pseudovariety finitely

based?

In connection with Problem 3.1, the following result from [Volkov, 2000]
seems to be worth mentioning:

Proposition 3.1. For each n ≥ 5, the variety generated by all finitely based

semigroups with n elements is nonfinitely based.

4 How to prove that a finite semigroup
is nonfinitely based

4.1 A classification of methods

We start with a rough description of the main ideas which underlie the
known results showing the absence of a finite basis for the identities of a
finite semigroup. Browsing through the literature, one may observe that
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in spite of the apparent diversity of the methods in use, they clearly group
around four basic approaches. Here we attempt to present these approaches
in the general form, while the rest of the section surveys their concrete
incarnations.

1. Syntactic analysis. These methods directly appeal to the syntactic char-
acterization of the deducibility of semigroup identities provided by Pro-
position 1.1. In order to show that IdS has no finite basis we first find a
specific infinite series Σ of identities from IdS and then verify that due to
the constraints caused by certain peculiarities of S , “long” identities of Σ
cannot be formally deduced from any set of “short” identities in IdS .

Successful implementations of this scheme include Perkins’ method [1966;
1969] that brought the very first examples of nonfinitely based finite semi-
groups, the methods applied by Irastorza [1985] and Almeida [1991] to study
the finite basis problem for certain semidirect products, Trahtman [1987]
and Blanchet-Sadri’s [1994] methods as well as the methods of the recent
investigations by Jackson [1999, 2001], Jackson and O. Sapir [2000], O. Sapir
[1997, 2000]. We briefly describe Perkins’ method and its major applications
and survey some results from [Jackson, 1999; Jackson and O. Sapir, 2000;
O. Sapir, 1997, 2000] in Subsection 4.2.

2. Critical semigroups. Let V = VarS . For each positive integer n , we denote
by V(n) the variety defined by all identities in no more than n variables that
hold in V . Alternatively, V(n) can be described as the class of all semigroups
whose subsemigroups with no more than n generators lie in V .

It is clear that V(n) ⊇ V for every n and that V = V(n) for some n if
V is finitely based. On the other hand, by Birkhoff’s finite basis theorem
[1935], see also [Burris and Sankappanavar, 1981, §V.4], every variety V(n) is
finitely based. Thus, the equality V = V(n) for some n is not only necessary
but also sufficient for S to be finitely based. Therefore showing that S is
nonfinitely based is equivalent to proving that, for any n , the containment
V(n) ⊇ V is strict, that is, there exists a semigroup Sn ∈ V(n) \ V . We call
semigroups Sn obeying the latter requirement critical with respect to S .

To build a series of critical semigroups, one needs a construction which
is highly sensitive to removing generators. Indeed, the requirement Sn ∈
V(n) \ V says that even though Sn does not belong to the variety V , every
subsemigroup of Sn obtained by retaining only n generators does. Quite
a few constructions have been invented to fulfil this requirement in various
concrete situations, and it is interesting that most of them share a common
feature. Namely, these constructions somehow encode a graph such that
removing generators corresponds to removing edges from that graph until

13



one arrives at its spanning tree. For instance, critical semigroups often arise
as semigroups of partial transformations of a finite set or, in other words,
as transition semigroups of incomplete automata, and it is the underlying
graph of the corresponding automaton that stands behind the scene. As
a typical example, Fig. 1 shows the transformations α1, . . . , αn of the set
{0, 1, . . . , n} that generate a semigroup from the series of critical semigroups
invented by Cowan and Reilly [1995] and then utilized also in [Repnitskǐı
and Volkov, 1998].

r r r r r✲ ✲ ✲
✻

❄✛r r

♣ ♣ ♣

α1

α1, α2 α2, α3 αn−2, αn−1

αn−1, αn

αn

1 2 3 n−2 n−1

n0

Figure 1: Generators of critical semigroup from [Cowan and Reilly, 1995]

Another tool that has proved to be quite appropriate for producing crit-
ical semigroups is the classical Rees matrix construction [see, e.g., Clifford
and Preston, 1961,1967, §3.1]. For a Rees matrix semigroup M0(G; I,Λ;P )
with the Λ × I -sandwich-matrix P = (pλ i) over a group G with zero, the
“hidden” graph is the bipartite graph introduced by Houghton [1977]: it has
the vertex set I ∪ Λ and the edge set {(i, λ) ∈ I × Λ | pλ i 6= 0}. Again
we supply a simple but typical example: Fig. 2 (on the next page) shows
the sandwich-matrix and the corresponding graph for the Rees matrix semi-
group M0(C2;m,m;Pm) (where C2 = {e, a} is the 2-element group and
m = {1, 2 . . . ,m}). This semigroup appears in the sequence of critical semi-
groups used first in [Mashevitzky, 1983] and later in [Mashevitzky, 1996a;
Volkov, 1996]. The reader may observe that although the critical semigroups
in our two examples essentially differ as to their origin and their algebraic
properties, they basically encode graphs of the same kind.

We present several methods based on the use of Rees matrix semigroups
as critical semigroups in Subsection 4.3. These methods originated in a trick
from aforementioned Mashevitzky’s note [1983]; since then they have been
applied and essentially developed in [Volkov, 1989; M. Sapir and Volkov,
1994; Mashevitzky, 1999, 2007, 2012]. “Rees matrix” methods have also
been extended to the unary semigroup environment [Auinger, 1992; Auinger,
Dolinka and Volkov, 2012a,b; Volkov, 1996], to pseudovarieties [Volkov, 1995,
1996], and to so-called collective identities of finite semigroups [Mashevitzky,
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Figure 2: The matrix and the graph
of a critical semigroup from Mashevitzky [1983]

1996a].
Mastering critical semigroups as specific partial transformation semi-

groups was first utilized by E. Kleiman [1979] in order to show that the
Brandt monoid B1

2 is nonfinitely based as an inverse semigroup. Since the
critical semigroups in his series were finite, this also gave a first proof 5 that
B1

2 is nonfinitely based in the class of finite semigroups [E. Kleiman, 1982]—
the fact which cannot be extracted from Perkins’ syntactic arguments. A
similar approach has proved to be effective for solving the finite basis prob-
lem for several important varieties and pseudovarieties, see [E. Kleiman,
1980; Cowan and Reilly, 1995; Repnitskǐı and Volkov, 1998; Volkov, 1998].
Very recently the methods based on partial transformation semigroups have
been further developed by Cowan, Reilly, Trotter and Volkov (unpublished).

Yet another trick was used by Trotter and Volkov [1996] in the pseu-
dovariety setting; in fact, the series of critical semigroups from this paper
can be also applied in order to prove that certain finite semigroups are non-
finitely based (unpublished). For instance, the direct product J15 × G is
nonfinitely based where G is an arbitrary non-abelian finite group and J15
is the 15-element J -trivial semigroup generated by the elements e0, . . . , e4
subject to the relations

e2i = ei, eiej = 0 (i, j = 0, . . . , 4, j 6= i, i+ 1 (mod 5)), e4e0e1 = 0.

3. Finitely inexpressible properties of finitely generated varieties. Let Θ be a
property of semigroup varieties such that

1) every finitely generated variety obeys Θ;

2) any finitely based variety satisfying Θ must fulfil a certain additional
restriction (say, possess an identity of a specific form).

5We note that M. Sapir’s general result [1988] which we discussed in Section 1 was not
yet known at that time.
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Then any finite semigroup S such that VarS violates the restriction Θ is
nonfinitely based. Thus, every such property Θ may be a powerful source
of examples of nonfinitely based finite semigroups.

Of course, it is very far from being obvious that there exists any Θ
satisfying the requirements 1) and 2) above. A striking discovery by M. Sapir
[1987b] was that such a property does exist; namely, he proved that if all
nil-semigroups from a finitely based variety V are locally finite, then V
satisfies a non-trivial identity of the form Zn = w , where the sequence {Zn}
of Zimin words6 is defined by:

Z1 ≡ x1, and Zn+1 ≡ Znxn+1Zn.

Since in every finitely generated variety all semigroups are locally finite (a
well-known corollary of the standard proof of the HSP-theorem), the prop-
erty of varieties to contain only locally finite nil-semigroups satisfies both 1)
and 2). Therefore if a finite semigroup S has no non-trivial identity of the
form Zn = w , not only is it nonfinitely based but it belongs to no locally fi-
nite finitely based variety. Semigroups obeying the latter condition are called
inherently nonfinitely based. The inevitable Brandt monoid B1

2 serves as a
concrete example of an inherently nonfinitely based finite semigroup. We
discuss the basic facts about inherently nonfinitely based finite semigroups
as well as the recent developments around them in Subsection 4.4. Here,
putting the notion of the inherent non-finite basability into a more general
context, we would like to encourage the continued study of finitely generated
varieties in the hope of discovering another finitely inexpressible property.
As an example of a fairly non-obvious property of finitely generated varieties
we mention the following result due to O. Sapir [1997]: a finitely generated

variety does not contain the variety of all bands. We do not know if the
latter property is finitely inexpressible.

4. Interpretation methods. Interpretation is a fundamental tool in the study
of algorithmic problems and in complexity theory: in order to prove that
a problem P is undecidable (hard), we usually interpret in terms of P

another problem Q which is already known to be undecidable (or, respec-
tively, hard). A similar idea may be applied to the finite basis problem
which—in view of the completeness theorem of equational logic (see Propo-
sition 1.1 above)—may be thought of as the finite axiomatizability problem

6Named so after Zimin whose crucial paper [1982] has revealed the role these words
play in the Burnside-type problems. See Section 3.3 of the survey [Kharlampovich and
M. Sapir, 1995] for an enthusiastic discussion of the history of Zimin words and of their
importance.
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for a specific deduction system. In order to show that the collection IdS
of all identities of a given semigroup S has no finite basis, we may try to
interpret within IdS another deduction system which we know is not finitely
axiomatized.

Making this fuzzy idea more precise, recall that a deduction system is
any set Q equipped with an inference relation ⊢ between Q and the set
of finite subsets of Q . Let |= stand for the “transitive closure” of ⊢ : for a
subset P ⊆ Q , P |= q if and only if either q ∈ P or there is a finite subset
R ⊆ Q such that R ⊢ q and P |= r for all r ∈ R . The deduction system
(Q,⊢) is said to be finitely axiomatized if there is a finite subset F ⊆ Q
such that F |= q for all q ∈ Q . By a dense interpretation of the deduction
system (Q,⊢) within IdS we mean a mapping · : Q → IdS such that

• {q1, . . . , qn} |= q if and only if the identity q follows from the identities
q1, . . . , qn ;

• the identity system Q forms a basis of IdS .

With these definitions we immediately obtain

Proposition 4.1. If a deduction system (Q,⊢) admits a dense interpreta-

tion within the set IdS of all identities of a semigroup S , then S is finitely

based if and only if the system (Q,⊢) is finitely axiomatized.

Thus, to show that S is nonfinitely based, it indeed suffices to densely
interpret within IdS a suitable non-finitely axiomatized deduction system
(or, vice versa, to densely interpret IdS within such a system).

So far the interpretation approach appears to be rather underexploited;
there are however two very important applications of this idea. Mashevitzky
[1984] has found an example of a nonfinitely based finite simple semigroup
by interpreting the identities of a Rees matrix semigroup over a group G in
the identities of G with a distinguished subset, and M. Sapir [1991] has con-
structed several surprising examples of nonfinitely based finite semigroups
by interpreting in their identities some “weak” deduction systems defined
on relatively free periodic groups. We will discuss these two interpretation
methods in Subsection 4.6.

4.2 Syntactic methods

We have chosen Perkins’ method to play the role of a representative of the
group of syntactic methods: not only was it the very first tool developed for
proving that a finite semigroup is nonfinitely based, but being simple enough,
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it nevertheless demonstrates two technical notions which are crucial for all
such methods. The first of those notions is that of an isoterm: a word u is
said to be an isoterm relative to a semigroup S if S satisfies no non-trivial
identity of the form u = v ; more formally, if u /∈

⋃

IdS . The second one
is closedness under deletion. Denote by c(u) the content of u , that is, the
set of all letters occurring in u . Suppose that a system Σ of non-trivial
identities contains all its consequences. Then Σ is closed under deletion if
for any u = v in Σ, c(u) = c(v) and if |c(u)| > 1 and all occurrences of
some letter in u and in v are deleted, the resulting identity either is trivial
or belongs to Σ. It is easy to see that if S = S1 and S is not a group, then
IdS is always closed under deletion.

Now we can formulate Perkins’ result.

Theorem 4.2. [Perkins, 1969, Theorem 7] Let S be a semigroup. Then S
is nonfinitely based whenever it possesses the following four properties:

1) the words xyzyx and xzyxy are isoterms relative to S ;
2) S satisfies neither x2y = yx2 nor (xy)2 = xy2x;
3) the identity system IdS is closed under deletion;

4) for n = 1, 2, . . . , S satisfies the identity

xy1 · · · ynxyn · · · y1 = xyn · · · y1xy1 · · · yn.

Perkins has then verified that the Brandt monoid B1
2 satisfies the condi-

tions 1)–4). Another application of Theorem 4.2 in the same paper [Perkins,
1969] is the result to which we referred in Table 1: there is a finitely based
finite semigroup S such that S1 is nonfinitely based. Nowadays it is clear
that the Brandt semigroup B2 might have served as such an example since
Trahtman [1981a] has proved that it is finitely based7. Fortunately the lat-
ter fact was not known in 1966—otherwise the following construction might
not have appeared at all!

We say that a word u ∈ A∗ is a factor of another word w ∈ A∗ if
w ≡ vuv′ for some v, v′ ∈ A∗ . Let W be a finite set of words from A+ . We
denote by S(W ) the set of all factors of words in W together with a new
symbol 0 and equip this set with the following multiplication:

u · v =

{

uv if uv is a factor of a word in W ,
0 otherwise.

7Reilly [2008] has recently observed that there is a serious lacuna in the argument
in [Trahtman, 1981a] and has mastered a correct proof of Trahtman’s result using a (fairly
nontrivial) solution to the word problem for B2 . Another, rather straightforward proof
has been suggested by Lee and Volkov [2007].
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More formally, S(W ) can be defined as the Rees quotient of the free monoid
A∗ over the ideal

I(W ) = {u ∈ A∗ | u is not a factor of any w ∈W},

and it is easy to see that every finite Rees quotient of the free monoid is of
this form.

It is clear that S(W ) \ {1} is a nilpotent semigroup and so it is always
finitely based. Perkins has observed that if W = {xyzyx, xzyxy, xyxy, x2z}
then S(W ) satisfies the conditions 1)–4) and thus is nonfinitely based. This
gave the example he was looking for.

As a possible approach to Tarski’s problem for semigroups, M. Sapir has
suggested investigating the following question:

Problem 4.1. [Survey-85, Question 7.11] Is there an algorithm that when

given a finite set W of words decides if the monoid S(W ) is finitely based

or not?

Clearly, answering Problem 4.1 in the negative will mean a negative an-
swer to Problem 2.1 as well. We mention also a connection between a version
of Problem 4.1 and Tarski’s problem for syntactic monoids (Problem 2.2): it
is easy to verify that if W consists of a single word, then the monoid S(W )
is precisely the syntactic monoid of the language W . In fact, Jackson [2001]
has observed that even in the case when |W | > 1, there quite often exists a
word w such that the monoids S(W ) and S({w}) satisfy the same identities
thus being equivalent from the point of view of the finite basis property.

Though Problem 4.1 still remains open, it has motivated O. Sapir and
Jackson’s profound studies of the equational properties of the monoids S(W ).
First of all, they have discovered several sufficient conditions for a finite
monoid S to be nonfinitely based. Each of the conditions says that S is
nonfinitely based whenever certain words are isoterms relative to S , while
an infinite series of words contains no isoterms relative to S .8 Applying
some of these conditions, O. Sapir [1997, 2000] has described all words w in
two letters such that the monoid S({w}) is finitely based:

Theorem 4.3. Let w be a word with |c(w)| = 2. The monoid S({w}) is

finitely based if and only if w up to a change of letter names coincides with

one of the words xnym or xnyxn (n and m are positive integers).

8The idea (of course, inspired by Theorem 4.2) to express conditions of the non-finite
basability in the language of isoterms is very well suited for analyzing the finite basis
problem for the monoids S(W ) because isoterms relative to such monoids are easy to
control; in particular, each factor of a word from W is an isoterm relative to S(W ) .
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In particular, the monoid S({xyxy}) is nonfinitely based. It consists
of 9 elements and is, as verified by Jackson [1999], the smallest nonfinitely
based monoid of the form S(W ). We note as a comparison that the monoid
in the above example by Perkins has 25 elements.

In contrast with the clear description of “finitely based words” in two
letters, the picture for words involving larger numbers of letters seems to
be rather complicated. The following theorem combining two results by
Jackson [2001] illustrates this claim.

Theorem 4.4. a) Every word w is a factor of a word w′ at most four

letters longer than w so that the monoid S({w′}) is nonfinitely based. If

|c(w)| > 1, then w′ can be chosen such that c(w′) = c(w).

b) Every word w is a factor of a word w′ such that the monoid S({w′}) is

finitely based.

Theorem 4.4 clearly implies

Corollary 4.5. With every word w ∈ A+ , one can start an infinite sequence

w ≡ w1, w2, . . . of words such that wk is a factor of wk+1 (so that S({wk})
is a Rees quotient of S({wk+1})) and in the sequence S({wk}), k = 1, 2, . . . ,
finitely and nonfinitely based monoids alternate.

One may ask if there always is a bound on the number of distinct letters
in the words w1, w2, . . . . By Theorem 4.3 there exist words w in two letters
(the word xyxy , for instance) such that, for no word w′ over the set c(w)
having w as a factor, the monoid S({w′}) is finitely based. Jackson [2001]
has constructed words in three letters (the shortest of those words has length
44) with the same property and conjectured that such words exist over
any larger alphabet as well. If this is the case, any “alternating” sequence
w1, w2, . . . such as in Corollary 4.5 must include words in arbitrarily many
letters.

In the general situation, that is, for monoids of the form S(W ) with
W being an arbitrary finite set of words, Jackson and O. Sapir [2000] have
exhibited many strange examples showing that, in a sense, this class of
monoids behaves with respect to the finite basis property as irregularly as
the class of all finite semigroups. We collect two of their results in the
following theorem:

Theorem 4.6. a) With every finite set W ⊂ A+ , one can start an infinite

increasing sequence W = W1 ⊂ W2 ⊂ · · · of finite sets of words such that

in the sequence S(Wk), k = 1, 2, . . . , finitely and nonfinitely based monoids

alternate.
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b) There are finite sets V1, V2 ⊂ A+ such that the monoids S(V1) and S(V2)
are nonfinitely based [finitely based ], while their direct product S(V1)×S(V2)
is finitely based [respectively, nonfinitely based ].

Jackson [1999] has also shown that in some natural sense almost all
monoids of the form S(W ) are nonfinitely based—compare this with the
discussion preceding the formulation of Problem 2.4. Thus, Perkins’ un-
awareness of a finite identity basis for the Brandt semigroup B2 has indeed
given rise to a very powerful source of nonfinitely based finite semigroups!

4.3 “Rees matrix” methods

Recall that these methods use Rees matrix semigroups over a group with
zero behind the scene so to speak (that is, as critical semigroups), while
semigroups to which the methods apply may be of fairly general nature as
in the following theorem from [Volkov, 1989]. As usual, the core C(S) of a
semigroup S is the subsemigroup of S generated by all idempotents of S .

Theorem 4.7. Let S be a finite semigroup such that the 5-element idempo-

tent-generated 0-simple semigroup A2 belongs to the variety Var S . If there
exists a group G ∈ Var S \ VarC(S), then S is nonfinitely based.

Theorem 4.7 has many applications. For example, it easily implies that
the semigroup Tn of all total transformations of an n-element set is non-
finitely based if n ≥ 3. Indeed, A2 ∈ Var Tn since the representation of
A2 by the right translations of either of its 3-element right ideals is faith-
ful whence A2 embeds into T3 . Further, the group Sn of all permutations
of an n-element set clearly belongs to Var Tn , and since all subgroups of
the core C(Tn) embed into Sn−1 , it is easy to check that Sn /∈ VarC(Tn)
(see [Volkov, 1989] for details). Similar reasoning applies to other impor-
tant types of transformation semigroups. For Rees matrix semigroups, The-
orem 4.7 ensures that for any finite group G, the semigroup M0(G; I,Λ;P )
is nonfinitely based whenever there exist λ, µ ∈ Λ, i, j ∈ I such that
pλ i, pλ j , pµ j 6= 0, pµ i = 0 and the group G does not belong to the variety
VarH , where H is the subgroup of G generated by all non-zero entries of
the sandwich-matrix P .

The unary semigroup version of Theorem 4.7 is due to Auinger, Dolinka
and Volkov [2012a]. For a unary semigroup (S, ·,∗ ) we denote by He(S) the
Hermitian subsemigroup of S , that is, the unary subsemigroup of S which
is generated by all elements of the form xx∗ . Furthermore, let C3 be the
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regular ∗-semigroup M0(E;3,3;P ) where E = {e} is the trivial group,
3 = {1, 2, 3} and

P =





e e e
e e 0
e 0 e



 ,

the unary operation ∗ on C3 being defined by

(i, e, j)∗ = (j, e, i), 0∗ = 0.

With this notation we have

Theorem 4.8. Let S be a finite unary semigroup such that the semigroup

C3 belongs to the unary semigroup variety VarS . If there exists a group

(G, ·,−1) such that G ∈ Var S \ VarHe(S), then S is nonfinitely based.

Theorem 4.8 applies to many important finite unary semigroups such as:

• the semigroup (Bn, ◦,
−1 ) of all binary relations on an n-element set,

1 < n < ∞ , endowed with the unary operation of taking the dual
relation;

• the semigroup (M2(K), ·,t ) of all 2× 2-matrices over a finite field K
having more than two elements, endowed with transposition;

• the semigroup (M2(Zp), ·, †) of all 2 × 2-matrices over the field Zp

where p ≡ 3 (mod 4), endowed with Moore-Penrose inverse9.

Over the last decade several types of so-called diagram monoids (Brauer
monoids, partition monoids, Jones monoids, Kauffman monoids etc.) have
been intensively studied in the semigroup literature. These monoids con-
sist of elements of geometric flavor (diagrams) and have a geometrically
defined multiplication as well as a natural unary operation of flipping the
corresponding diagrams. Using Theorem 4.8, Auinger, Dolinka and Volkov
[2012b] have shown that many of these monoids are nonfinitely based as
unary semigroups.

In the recent papers [Mashevitzky, 1999, 2007] devoted to the finite basis
problem for completely 0-simple semigroups, Mashevitzky has used as criti-
cal semigroups certain Rees matrix semigroups which are more complicated
than those involved in the proofs of Theorems 4.7 and 4.8. It has enabled
him to prove the following result:

9See [Drazin, 1979] for the definition and a discussion of the concept of Moore-Penrose
inverse in an involution semigroup.
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Theorem 4.9. For each m ≥ 3, the semigroup Rm = M0(C2;m,m;Pm),
where C2 = {e, a} is the 2-element group, m = {1, 2 . . . ,m} and

Pm =

















e e 0 . . . 0 0
0 e e . . . 0 0
0 0 e . . . 0 0
. . . . . . . .
0 0 0 . . . e e
a 0 0 . . . 0 e

















,

is nonfinitely based.

We note that the semigroups Rm are idempotent-generated, and there-
fore, Theorem 4.7 cannot be used to show that they are nonfinitely based.
An interesting application of the technique from the proof of Theorem 4.9
is the result from [Mashevitzky, 2007] that the semigroup T2(3) of all non-
surjective transformations of a 3-element set is nonfinitely based.

Theorem 4.9 may seem rather special, and its proof is quite bulky. How-
ever, it is worth recalling that Mashevitzky’s paper [1983] (in which the idea
of using Rees matrix semigroups as critical semigroups first appeared) was
also devoted to the identities of a very specific finite semigroup and these
identities were studied in [Mashevitzky, 1983] via direct calculations. After
a structural substitute for those calculations was found in [Volkov, 1989],
the method has become flexible enough to be successfully applied in many
interesting situations. Now a challenging problem is to reveal the hidden
structural reasons which stay behind the calculations in [Mashevitzky, 1999,
2007], thus mastering a new powerful general condition for the non-finite
basability of a finite semigroup.

4.4 Inherently nonfinitely based finite semigroups

Let us start with presenting the definition of an inherently nonfinitely based
finite semigroup in a more explicit form. A nonfinitely based semigroup S
is said to be inherently nonfinitely based if every locally finite variety V for
which S ∈ V is also nonfinitely based10. M. Sapir [1987b] has proved

Theorem 4.10. A finite semigroup S is inherently nonfinitely based if and

only if all the Zimin words Zn are isoterms relative to S .

10The term “inherently nonfinitely based” was suggested by Perkins [1984], while the
very first example of an inherently nonfinitely based finite algebra (in fact, a 3-element
groupoid) was exhibited by Murskǐı [1979].
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M. Sapir [1987a] has given a structural description of inherently non-
finitely based finite semigroups. Recall that the upper hypercentre of a group
G is the final term in the upper central series of that group.

Theorem 4.11. a) A finite semigroup S is inherently nonfinitely based if

and only if there exists an idempotent f ∈ S such that the submonoid fSf
is inherently nonfinitely based.

b) A monoid M with n elements is inherently nonfinitely based if and only

if there exist b ∈M and an idempotent e ∈MbM such that if the elements

ebe and ebn!+1e belong to the maximal subgroup He of M containing e,
then they lie in different cosets of He with respect to its upper hypercentre.

We note that Theorem 4.11 obviously yields an algorithm that when
given the Cayley table of a finite semigroup S decides if S is inherently
nonfinitely based or not. In contrast, it follows from McKenzie’s results
[1996] that no algorithm can recognize if a given finite groupoid is inherently
nonfinitely based.

As mentioned in Subsection 4.1, the 6-element Brandt monoid B1
2 is

inherently nonfinitely based. Of course, this implies that every finite semi-
group S such that B1

2 ∈ Var S is inherently nonfinitely based as well. More-
over, Theorem 4.11 easily implies that if all subgroups of a finite semigroup
S are nilpotent, then the presence of the 6-element Brandt monoid in the
variety VarS is not only sufficient but also necessary for S to be inherently
nonfinitely based [see M. Sapir, 1987a]. Further classes of finite semigroups
whose inherently nonfinitely based members can be characterized in the
same way have recently been found by Jackson [1999, 2000]:

Proposition 4.12. If S is a finite regular semigroup with n elements, then

the following are equivalent:

(i) S is inherently nonfinitely based;

(ii) B1
2 ∈ Var S ;

(iii) S does not satisfy the identity xyx = (xy)n!+1x.

Proposition 4.13. If the idempotents of a finite semigroup S form a sub-

semigroup, then S is inherently nonfinitely based if and only if B1
2 ∈ Var S .

On the other hand, M. Sapir [1987a] has constructed an example of
an inherently nonfinitely based finite semigroup T such that B1

2 /∈ Var T .
Jackson [1999, 2002] has shown that any such T must consist of at least 56
elements and contain at least 9 non-nilpotent subgroups. He has described
all 56-element inherently nonfinitely based semigroups T such that B1

2 /∈
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Var T ; moreover, he has deduced from Theorem 4.11 a description of all
minimal with respect to division inherently nonfinitely based finite semi-
groups11. Since an inherently nonfinitely based finite semigroup has at least
one minimal inherently nonfinitely based divisor, the latter result provides
another algorithmically effective characterization of inherently nonfinitely
based finite semigroups.

In contrast, the following problem still remains open:

Problem 4.2. [Survey-85, Problem 9.1] Describe all minimal (with respect

to class inclusion) finitely generated inherently nonfinitely based varieties,

that is, varieties V such that V = Var S for some inherently nonfinitely

based finite semigroup S , but no proper subvariety of V has this property.

Even though every minimal finitely generated inherently nonfinitely based
variety must be generated by a minimal inherently nonfinitely based divisor,
the converse is not true: for instance, the 6-element semigroups B1

2 and A1
2

both are minimal inherently nonfinitely based divisors, but VarB1
2 ( VarA1

2 .
Jackson [2002] has observed that there are infinitely many minimal finitely
generated inherently nonfinitely based varieties.

We call a finite semigroup S weakly finitely based if S is not inherently
nonfinitely based, that is, if S belongs to a locally finite finitely based va-
riety. Clearly, the class WFB of all weakly finitely based finite semigroups
strictly contains the class FB of all finitely based finite semigroups. From
the definition, the class WFB is H- and S-closed, and it easily follows from
Theorem 4.10 that WFB is also Pfin -closed. Thus, WFB is a pseudovari-
ety. Using Theorem 4.11, Volkov [2000] has proved

Proposition 4.14. The pseudovariety WFB is finitely based.

M. Sapir posed the following question:

Problem 4.3. [Survey-85, Question 11.2] Is the pseudovariety WFB gen-

erated by finitely based finite semigroups?

Recall that in Section 3 we have formulated the problem of a descrip-
tion of the pseudovariety generated by all finitely based finite semigroups
(Problem 3.1) to which Problem 4.3 suggests a tempting guess. In view of
Proposition 4.14, in order to disprove this guess, it suffices to show that the

11Recall that a semigroup S is said to divide a semigroup T (or to be a divisor of T )
if S is a homomorphic image of a subsemigroup of T . Clearly, the division relation when
restricted to the class S of all finite semigroups is a partial order.
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latter pseudovariety is nonfinitely based: then it cannot coincide with the
finitely based pseudovariety WFB .

If one focuses on the finite basis problem for finite semigroups (like we
do in this survey), then the notion of an inherently nonfinitely based semi-
group appears to be rather abundant. Why should we care about locally
finite varieties which are not finitely generated when we are only interested
in finitely generated ones? This question leads us to introduce the following
notion: call a finite semigroup S strongly nonfinitely based if S cannot be
a member of any finitely based finitely generated variety. Clearly, every
inherently nonfinitely based finite semigroup is strongly nonfinitely based,
and the question if the converse is true is another intriguing open problem:

Problem 4.4. Is there a strongly nonfinitely based finite semigroup which

is not inherently nonfinitely based?

As some evidence for a positive answer to Problem 4.4 being possible,
we mention the situation with a similar question for quasiidentities. Recall
that a semigroup quasiidentity is an expression of the form

u1 = v1 & u2 = v2 & · · · & un = vn =⇒ u = v,

where u1, v1, u2, v2, . . . , un, vn, u, v ∈ A+ . A semigroup S satisfies such a
quasiidentity if for any homomorphism ϕ : A+ → S , uϕ = vϕ provided that
u1ϕ = v1ϕ, u2ϕ = v2ϕ, . . . , unϕ = vnϕ. After having defined satisfaction
this way, one straightforwardly proceeds with the “quasi”-analogues for all
notions of the theory of identities and varieties, including those considered
in this subsection. A surprising fact discovered by Margolis and M. Sapir
[1995] is that no finite semigroup can be inherently nonfinitely based with
respect to quasiidentities12. On the other hand, M. Sapir has proved in his
Ph.D. thesis [1983] that there exists a finite semigroup which is strongly
nonfinitely based with respect to quasiidentities (in fact, every completely
simple finite semigroup which is not a rectangular group or which contains
a non-abelian p-group has this property).

Let us return to the realm of identities and varieties. Here we observe
that the notion of the strong non-finite basability is of special interest in the
unary semigroup setting. The point is that M. Sapir [1993] has proved that
no finite inverse semigroup is inherently nonfinitely based as an algebra of
type 〈2, 1〉 . This result can be easilyextended to wider classes of unary semi-

12It is quite interesting that there exist finite unary semigroups which are inherently
nonfinitely based with respect to quasiidentities. A method for constructing such unary
semigroups (in fact, rectangular bands) has been recently developed by Lawrence and
Willard [1998].
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groups, for instance, to regular ∗-semigroups13. Having this in mind, one
seeks a notion which, being weaker than the inherent non-finite basability,
could be nevertheless applied to the finite basis problem for finite unary
semigroups with a similar effect. The notion of a strongly nonfinitely based
semigroup is a reasonable candidate here. The crucial problem is:

Problem 4.5. Is there a finite inverse semigroup which is strongly non-

finitely based as an inverse semigroup? In particular, is the Brandt monoid

B1
2 strongly nonfinitely based as an inverse semigroup?

The second question in this problem was first asked by E. Kleiman [1979].
Kad’ourek [2003a] has almost solved Problem 4.5 in the following sense:

he has proved that B1
2 is strongly nonfinitely based with respect to the

class of all inverse semigroups with solvable subgroups. In other words,
every finite inverse semigroup S such that B1

2 ∈ Var S is nonfinitely based
provided that all subgroups of S are solvable.

4.5 A comparison between the three “standard” methods

The word “standard” in the title of this subsection is merely an abbreviation
of the expression “most frequently used so far”. No doubt, the three groups
of methods which we presented in Subsections 4.2–4.4 above have the right
to be called standard in such sense. After having discussed each of them
individually, we want to compare them from the point of view of their ranges
of applicability. These ranges are represented by the three boxes on Fig. 3.

We put in the boxes certain nonfinitely based finite semigroups. When a
semigroup S appears in the box corresponding to one of the three standard
methods, it means that the fact that S possesses no finite identity basis
may be obtained by the method. Of course, if S stays in the intersection
of two boxes, then each of the corresponding methods applies. The reader
is already acquainted with a majority of semigroups in Fig. 3. The only
new objects are the semigroups On and Tn(k) which are semigroups of
transformations of the set {1, 2, . . . , n}: the semigroup On consists of all
total transformations that preserve the standard order of this set, while
the semigroup Tn(k) (k ≤ n) is the ideal of the full transformation semi-
group Tn consisting of all total transformations whose images have at most
k elements.

The dashed line in Fig. 3 symbolizes the border between aperiodic finite
semigroups (that is, finite semigroups having only one-element subgroups)

13A proof of this extension has been published by Auinger, Dolinka and Volkov [2012a].
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Semigroups with trivial subgroups Semigroups with non-trivial subgroups

S({xyxy}) A2 ×Cp

B1
2 , A

1
2 Tn, n ≥ 3

On, n ≥ 3 Tn(k), n > k ≥ 3

Syntactic methods The Rees matrix

methods

Inherently nonfinitely based semigroups

Figure 3: The ranges of applicability of the three standard methods

and all other finite semigroups. We see that so far the syntactic methods
have been applied only to aperiodic finite semigroups, while any applica-
tion of the Rees matrix methods has required the presence of a non-trivial
subgroup. Of course, these constraints are caused by the very nature of the
methods. In contrast, the method of inherently nonfinitely based semigroups
can be applied to semigroups with and without non-trivial subgroups.

A further important constraint on the syntactic methods is that they only
apply to monoids (or, more precisely, to semigroups sharing identities with a
monoid): all these methods heavily exploit theclosure under deletion14. To
some extent, the method of inherently nonfinitely based semigroups is also
of the monoidal nature—cf. Theorem 4.11a) above—even though it can be
applied to certain semigroups with no identity element (as the semigroups
Tn(k) with n > k ≥ 3, for instance). The Rees matrix methods do not
depend on the presence of an identity element.

In conclusion, we mention that although each of the three approaches has
its own specificity, they are tightly connected with each other. For example,
M. Sapir’s proof [1988] that inherently nonfinitely based finite semigroups
are nonfinitely based within the class of all finite semigroups uses the critical
semigroup method, and the critical semigroups that appear in his proof are
of the form S({w}) for suitable words w ∈ A+ .

14This observation is no longer true since Lee [2012] has developed a purely syntactic
condition for a finite semigroup to be nonfinitely based that applies to many semigroups
without identity element but does not apply to any monoid.
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4.6 Interpretation methods

1. Mashevitzky’s pointed group method . Following Bryant [1982], we call a
pair (G, p), where G is a group and p ∈ G is a fixed element considered as
an additional nullary operation, a pointed group. A striking result by Bryant
[1982] is that there exists a finite pointed group (G, p) which is nonfinitely
based (as an algebra of type 〈2, 0〉). Mashevitzky [1984] has used Bryant’s
pointed group (G, p) in order to construct a nonfinitely based finite simple
semigroup. In fact, Mashevitzky’s semigroup is the Rees matrix semigroup

over that group G with the sandwich matrix

(

e p
e e

)

where e is the identity

element of G. This important example still remains the only known non-
finitely based finite completely regular semigroup; moreover, for 15 years it
was the only example of a nonfinitely based variety of completely simple
semigroups over a finitely based variety of groups. Only recently Auinger
and Szendrei [1999] have constructed another completely simple semigroup
variety with this property (their variety is not finitely generated).

The idea of relating the identities of Rees matrix semigroups with the
type 〈2, 0, . . . , 0〉 identities of their structure groups in which the entries of
corresponding sandwich matrices play the role of distinguished constants is
very natural and promising. Unfortunately, in spite of its successful debut
in [Mashevitzky, 1984], it seems to have been abandoned. Mashevitzky
mentioned this idea in his survey [1988] where he announced that it could be
used to prove that any completely simple semigroup over a nilpotent group
of finite exponent is finitely based, but no detailed proof of this result has
appeared so far. There is no doubt that this interesting direction deserves
more attention.

2. Sapir’s verbal subset method . We describe this method following Survey-
85, Section 11. Let S be an arbitrary semigroup, a and 0 two new symbols.
Consider the semigroup (T(S), ◦) with the carrier set

S ∪ {a} × S1 ∪ S1 × {a} ∪ {a} × S1 × {a} ∪ {0}

and with the multiplication extending the multiplication in S and such that
for all s1, s2 ∈ S1 , t ∈ S ,

(a, s1) ◦ t = (a, s1t), t ◦ (s2, a) = (ts2, a),

(a, s1) ◦ (s2, a) = (a, s1s2, a),

while all other products are equal to 0. Given a set W ⊆ A+ , W (S) denotes
the set of all values of words from W in S , that is, the union of the sets Wϕ
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over all possible homomorphisms ϕ : A+ → S . We will call subsets of the
form W (S) verbal subsets of S . By T(S,W ) we denote the Rees quotient
of the semigroup T(S) over the ideal {a} ×W (S)× {a} ∪ {0}. The main
property of the semigroup T(S,W ) is revealed by the following result due
to M. Sapir [cf. Survey-85, Proposition 11.1]:

Theorem 4.15. Let F be the free semigroup over the alphabet A in the

variety Var S , W ⊆ A+ a set of words. If W (F ) 6= V (F ) for all finite

subsets V ⊂ A+ , then the semigroup T(S,W ) is nonfinitely based.

The idea behind Theorem 4.15 is an interpretation of a natural deduc-
tion system (F,⊢) on the relatively free semigroup F . In this system, P⊢q
(where P ⊂ F and q ∈ F ) means that there exists p ∈ P and an endomor-
phism ψ : F → F such that q = pψ . Clearly, subsets of F closed under ⊢
are precisely verbal subsets of F .

A comparison between the inference rule of (F,⊢) and that of equational
logic (see Proposition 1.1) shows that, informally speaking, the inference in
(F,⊢) is much weaker: in equational logic, besides using endomorphisms, we
may also multiply on both sides. The construction of the semigroup T(S,W )
is designed to “wrap” each identity of S by a new letter. This excludes
using the multiplication and basically reduces the deduction apparatus to
endomorphisms only, in other words, to the inference rule of (F,⊢).

Because of the “weakness” of ⊢ , usually it is pretty easy to find a verbal
subset W (F ) such that the subsystem (W (F ),⊢) is not finitely axiomatized,
that is, W (F ) 6= V (F ) for all finite subsets V ⊂ A+ . This makes Theo-
rem 4.15 a very powerful source of interesting examples of nonfinitely based
semigroups, including finite ones. Several concrete examples found this way
have been collected in M. Sapir’s paper [1991]. For instance, let S be any
finite non-abelian group of exponent n and denote the word xn−1yn−1xy
by [x, y] . If

W = {[x1, y1], [x1, y1][x2, y2], . . . , [x1, y1] · · · [xm, ym], . . .},

then W (F ) is the commutator subgroup of the group F , and it is known
to be not finitely generated as a verbal subset. The corresponding finite
semigroup T(S,W ) is then nonfinitely based. Taking here as S the group

〈a, b, c | ap = bp = cp = 1, ab = bac, ca = ac, cb = bc〉

of order p3 and exponent p (p is an odd prime), one obtains an example of
a nonfinitely based finite semigroup T = T(S,W ) which is minimal in the
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following sense: the variety Var T has only finitely many subvarieties, and
each proper subvariety of Var T is finitely generated and finitely based.

Again, it seems that the potential of this approach is underexploited,
and it is worth looking for further applications of the method.
3. Interpreting digraphs in unary Rees matrix semigroups. By a digraph (di-
rected graph) we mean a structure G = 〈V ; ρ〉 , where V is a set and
ρ ⊆ V × V is a binary relation on V . The adjacency semigroup A(G)
of G is defined on the set (V × V ) ∪ {0} and the multiplication rule is

(x, y)(z, t) =

{

(x, t) if y ρ z,

0 otherwise;

a0 = 0a = 0 for all a ∈ A(G).

In terms of semigroup theory, A(G) is the Rees matrix semigroup over
the trivial group using the adjacency matrix of the graph G as a sandwich
matrix. We endow A(G) with an additional unary operation a 7→ a′ defined
as follows:

(x, y)′ = (y, x), 0′ = 0.

Jackson and Volkov [2010] have shown that properties of digraphs ex-
pressed by so-called universal Horn sentences translate into unary identities
of their adjacency semigroups. This translation preserves finite axiomatiz-
ability, and moreover, if a class of digraphs if defined by all universal Horn
sentences of a finite digraph, then the corresponding variety of unary semi-
groups is finitely generated. This leads to a plethora of new examples of
nonfinitely based unary finite semigroups. For a concrete example, consider

the 3-vertex digraph H : . It is known that the universal Horn
sentences holding in H are not finitely axiomatizable whence the 10-element
semigroup A(H) is nonfinitely based as a unary semigroup.

A similar in its essence but technically more complicated method has
been developed by Jackson and McKenzie [2006] in order to interpret di-
graphs into “plain” semigroups (with no additional operations). It also has
produced a number of new examples of nonfinitely based finite semigroups
interesting from the viewpoint of computational complexity.

5 How to prove that a finite semigroup
is finitely based

This direction has progressed relatively slowly, and it still remains a collec-
tion of isolated theorems rather than a unified theory. Nevertheless, some of
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the results gathered in the subarea so far are interesting and worth discussing
here.

To start with, we recall a few important classes of finitely based finite
semigroups (most of them have already been mentioned above):

• finite semigroups satisfying a permutation identity (1) [Perkins, 1969,
Theorem 22], in particular, commutative or nilpotent finite semigroups;

• orthodox completely regular finite semigroups [Rasin, 1982], in partic-
ular, finite groups or finite bands;

• central15 simple finite semigroups [Survey-85, Theorem 20.3], in par-
ticular, simple finite semigroups with abelian subgroups.

Any finite semigroup S from these classes has in fact a property which
is much stronger than the property of being finitely based: every variety
contained in Var S is finitely based. Varieties with this property are usually
called hereditarily finitely based ; we shall apply the latter attribute to their
semigroups as well.

For finite semigroups the notion of a hereditarily finitely based semi-
group is in a natural sense dual to the notion of an inherently nonfinitely
based semigroup: indeed, a finite semigroup S is inherently nonfinitely
based if every locally finite variety containing Var S is nonfinitely based,
while S is hereditarily finitely based if every [automatically, locally finite]
variety contained in Var S is finitely based. By now we can only dream of
a description of hereditarily finitely based finite semigroups which would be
as complete as M. Sapir’s description of inherently nonfinitely based finite
semigroups (see Theorems 4.10 and 4.11 above). However, since the prop-
erty of being hereditarily finitely based is rather strong, we do hope that the
following decision problem may have a positive solution:

Problem 5.1. Is there an algorithm that when given an effective description

of a finite semigroup S decides if S is hereditarily finitely based or not?

The corresponding problem for general algebras seems to be open. For
completeness’ sake, we mention a closely related decision problem, namely,
the problem in which we, given a finite set Σ of identities, ask whether or not
the variety defined by Σ is hereditarily finitely based. This is undecidable
for groupoids [Murskǐı, 1971] and remains open for semigroups, see Survey-
85, Chapter III, for a discussion and a collection of partial results. We also
mention that there is an effective description of hereditarily finitely based

15A completely regular semigroup S is said to be central if the product ef of any two
idempotents e, f ∈ S belongs to the centre of the maximal subgroup containing ef .
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finite inverse semigroups (as algebras of type 〈2, 1〉): such a semigroup is
hereditarily finitely based if and only if it is a subdirect product of Brandt
semigroups and/or groups [E. Kleiman, 1979].

Developing an approach suggested by Volkov and M. Sapir [1988], Jack-
son [2000] has recently found positive solutions to the restrictions of Prob-
lem 5.1 to certain classes of monoids:

Proposition 5.1. Let M be a finite monoid verifying one of the conditions:

(i) the word x2 is an isoterm relative to M ;

(ii) M is isomorphic to a Rees quotient of the free monoid A∗ .

Then M is hereditarily finitely based if and only if M satisfies one of the

identities xyx = x2y or xyx = yx2 .

Proposition 5.2. Let M be a finite orthodox monoid. Then M is heredi-

tarily finitely based if and only if M is completely regular.

We have observed a duality between the notions of a hereditarily finitely
based and an inherently nonfinitely based semigroup. In Subsection 4.4
we have argued that from the “finite” standpoint, a notion which we have
called the strong nonfinite basability appears to be more natural than that
of the inherent nonfinite basability. Arguments of the same type apply to
the notion of a hereditarily finitely based semigroup. A finitely generated
variety may contain plenty of subvarieties which are not finitely generated
(even uncountably many of them as the example of the variety VarA1

2 shows
[see Trahtman, 1988]). Why should we care about these subvarieties when
we are only interested in finite semigroups? Thus, we call a finite semigroup
S strongly finitely based if every finite semigroup from the variety Var S
is finitely based. Clearly, every hereditarily finitely based finite semigroup
is strongly finitely based, and the question of whether the converse is true
constitutes a problem which is in a sense dual to Problem 4.4:

Problem 5.2. Is there a strongly finitely based finite semigroup which is

not hereditarily finitely based?

Jackson [2005c] has solved Problem 5.2 in the affirmative. Namely, he
has proved that the 7-element monoid S({xyx}) (which is finitely based by
Theorem 4.3) is strongly finitely based but not hereditarily finitely based.

In order to help the reader who at this point might be already over-
whelmed by too many versions of the notions of being finitely/nonfinitely
based, we put them all on Fig. 4. The question marks there correspond to
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Figure 4: A classification
of finite semigroups with respect
to the finite basis property

✲✛

✲✛

✲✛

✲✛

✛ ✲

✲✛

✲✛

?/ Jackson [2005c]

?

hereditarily

strongly

finitely based

weakly finitely based

nonfinitely based

strongly

inherently

Problems 4.4 and 5.2, while the bold line symbolizes the only border that
has been effectively localized so far.

We conclude this section with a brief overview of results establishing the
finite basis property for a few specific semigroups.

Trahtman [1991] has published a proof of his theorem first announced
in [Trahtman, 1983] that every 5-element semigroup is finitely based. We
refer to Survey-85, Section 10, for a detailed discussion of the history of the
problem and the previous steps towards its solution. Of course, [Trahtman,
1991] contains many clever tricks which may be useful for finding a finite
identity basis for further classes of finite semigroups. Recently Lee [2013]
has published a modified, very readable proof of Trahtman’s theorem.

Mashevitzky [1994] has proved that the semigroup Mn(1) of all n× n-
matrices of rank ≤ 1 over any field is finitely based. This completes a certain
chapter in the study of the finite basis problem for semigroups of n × n-
matrices because the answer to this problem for semigroups Mn(k) of all
n×n-matrices of rank ≤ k was already known for all k > 1. Namely, if the
ground field is finite, then the semigroup Mn(k) with k > 1 is nonfinitely
based and even inherently nonfinitely based because it contains a subsemi-
group isomorphic to the Brandt monoid B1

2 ; if the ground field is infinite,
then the semigroup Mn(k) with k > 1 satisfies no non-trivial identity; this
follows from an observation due to Golubchik and Mikhalev [1978].

Mashevitzky [1996b] has introduced and studied the notion of a left
hereditary system of semigroup identities. Let u and w be words. By
u|w we denote the longest prefix of u not containing w as a factor. For
any identity u = v , the identity u|w = v|w is called the left section of
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the identity u = v relative to w . A system of identities containing all left
sections of each of its identities relative to all words of length n is said to be
left n-hereditary. Left hereditary identity systems often arise as the identity
systems of semigroups that are extensions of a left zero ideal. For example, if
S is a subdirectly irreducible semigroup having a non-trivial left zero ideal,
then IdS is left 1-hereditary [Mashevitzky, 1996b]. Another example is the
semigroup Tn(2) of all transformations of an n-element set whose images
have at most 2 elements. If n ≥ 5, then the identity system IdTn(2) has
been shown by Torlopova [1982] to be left 2-hereditary.

The main results of [Mashevitzky, 1996b] are two propositions showing
that, in certain situations, the condition of being left hereditary suffices to
ensure that the ideal extension of a left zero semigroup by a finitely based
semigroup is again finitely based.

Proposition 5.3. Let T be a semigroup with 0 but without zero divisors

satisfying the identity xk = x for some k > 1. Suppose that S is an ideal

extension of a left zero ideal by the semigroup T and that the identity system

IdS is left 1-hereditary. Then S is finitely based whenever T is.

Proposition 5.4. Let T =M0(G; I,Λ;P ) be a Rees matrix semigroup over

a group G of finite exponent, and there exist λ, µ ∈ Λ, i, j ∈ I such that

pλ i, pλ j , pµ j 6= 0, pµ i = 0. Suppose that S is an extension of a left zero

ideal by the semigroup T and that the identity system IdS is 2-hereditary.
Then S is finitely based whenever T is.

An important application of Proposition 5.4 is the fact that the semi-
group Tn(2) is finitely based provided that n ≥ 5. This is a partial solution
to Question 22.1 in Survey-85. Recall that the semigroup T3(2) is nonfinitely
based (we mentioned this result from [Mashevitzky, 2007] in Subsection 4.3
above). Since the 4-element semigroup T2(2) = T2 is obviously finitely
based, the only remaining member of the family {Tn(k)} for which the finite
basis problem is still open is the 88-element semigroup T4(2). Mashevitzky
once announced (in his abstract submitted at XVIII All-Union Algebra Con-
ference held in Kishinev in September 1985) that T4(2) is finitely based but
this announcement was never confirmed in a detailed publication. Recently
Mashevitzky [2012] has proved that T4(2) is nonfinitely based.

6 Concrete problems

We conclude our survey with a list of open questions concerning with the
finite basis property for certain concrete finite semigroups. The first of these
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questions has been suggested by Rasin:

Problem 6.1. [Survey-85, Question 8.1] Let Cp = 〈a | ap = e〉 be the

cyclic group of prime order p, Mp = M(Cp;2,2;P ) where 2 = {1, 2},

P =

(

e a
e e

)

. Is the semigroup M1
p finitely based?

In order to explain the importance of Problem 6.1, we recall that the
only example of nonfinitely based finite completely regular semigroup known
so far is Mashevitzky’s completely simple semigroup over Bryant’s pointed
group (we discussed it in Subsection 4.6 above). In particular, it is still un-
known whether or not every finite band of abelian groups is finitely based.
The semigroups M1

p constitute natural candidates here. Furthermore, if
all semigroups M1

p are nonfinitely based (as we conjecture), then by a re-
sult by Rasin [1981], every hereditarily finitely based band of groups must
decompose into a subdirect product of completely simple semigroups (pos-
sibly, with zero adjoined) and bands. This would constitute a major step
towards a description of hereditarily finitely based finite completely regular
semigroups.

Petrich [2003] has shown that the variety VarM1
p has 32 subvarieties

and has found finite identity bases for all proper subvarieties. Thus, if the
semigroup M1

p is nonfinitely based, it generates a minimal (with respect to
inclusion) nonfinitely based variety of completely regular semigroups. The
existence of such varieties is an easy consequence of Zorn’s lemma but no
concrete example is known so far. This makes Problem 6.1 even more in-
triguing.

The next question deals with a natural class of semigroups of matrices:

Problem 6.2. [Survey-85, Question 22.2] Is the semigroup of all upper

triangular n× n-matrices (n ≥ 2) over a finite field finitely based?

A partial solution to this problem has been found by Volkov and Gold-
berg [2003]. Namely, they have shown that the semigroup of all upper
triangular n×n-matrices over a finite field K is even inherently nonfinitely
based provided that n ≥ 4 and |K| > 2. The case when the ground field
has exactly 2 elements and the size of matrices is 2 has been recently settled
by Zhang, Li and Luo [2012, 2013] who first proved that the correspond-
ing semigroup is finitely based and then verified that it is even hereditarily
finitely based. All other cases still remain open.

Volkov and Goldberg [2004] considered the semigroup of all upper trian-
gular n× n-matrices over the Boolean semiring 〈{0, 1}; +, ·〉 in which

0 · 0 = 0 · 1 = 1 · 0 = 0 + 0 = 0, 1 · 1 = 1 + 0 = 0 + 1 = 1 + 1 = 1.
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They proved that the semigroup is inherently nonfinitely based provided
that n ≥ 4. For n = 2 or 3, Volkov and Goldberg [2004] claimed that
the semigroup is not inherently nonfinitely based but in fact their argument
worked only for n = 2. This has been observed by Li and Luo [2011] who
have verified that the semigroup of all upper triangular Boolean n × n-
matrices is inherently nonfinitely based if n = 3 and is finitely based if
n = 2.

Next, we want to present a bunch of questions concerning with certain
important semigroups of partial transformations of the set {1, 2, . . . , n}. In
order to introduce all these semigroups in a concise way, we borrow from
[Volkov, 1998] the idea of putting them together in what we call the ba-

sic frame of partial transformation semigroups. The latter is the subsemi-
lattice of the ∩-semilattice of all semigroups of partial transformations of
{1, 2, . . . , n} generated by:

• Tn , the semigroup of all total transformations;

• In , the inverse symmetric semigroup, that is, the semigroup of all
injective partial transformations;

• POn , the semigroup of order-preserving partial transformations;

• PEn , the semigroup of all extensive partial transformations (recall
that a partial transformation α is said to be extensive if i.α ≥ i for
every i in the domain of α).

For n > 2, the basic frame consists of 13 semigroups named on Fig. 5 (on the
next page). Each of these semigroups is thus characterized by a combination
of some of the four just mentioned fundamental properties of transforma-
tions: being total, injective, order preserving, or decreasing. For example,
the semigroup Sn = Tn ∩ In consists of all total and injective transforma-
tions and is, of course, nothing else but the group of all permutations of
{1, 2, . . . , n}. See the survey [Higgins, 1999] for an interesting discussion of
the distinguished role the non-trivial semigroups in the basic frame play in
the theory of finite semigroups.

The dotted curves on Fig. 5 separate semigroups for which a solution
to the finite basis problem is known from “terra incognita” (with one small
exception in the case n = 3: the 5-element semigroup OE3 is, of course,
finitely based). The red solid line added to the original picture shows the
nowadays established border between finitely based and nonfinitely based
semigroups in the basic frame for all sufficiently large n . See the comments
after Problem 6.3 for more detail. The “positive” area needs no comment; as
for the nonfinitely based semigroups on Fig. 5, they all are even inherently
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Figure 5: The basic frame of transformation semigroups (n > 2)

nonfinitely based because each of them generates a variety containing B1
2

alias POI2 . Let us explicitly formulate the remaining questions:

Problem 6.3. Which of the transformation semigroups PEn , PEIn , En ,

POEn , POEIn (n > 2) and OEn (n > 3) are finitely based?

Volkov [2004] has solved the finite basis problem for the series OEn :
the semigroup OEn is finitely based if and only if n ≤ 4. Goldberg [2007]
has proved that, for each positive integer n , the monoids En+1 , PEn and
POEn satisfy the same identities and that these monoids are nonfinitely
based whenever n ≥ 4. S.O. Ivanov announced at the 57th conference
“Herzen Readings” held in St Petersburg in 2003 a finite identity basis for
the 6-element monoid E3 but didn’t published his proof. A proof was then
published by Lee [2009] who also proved a much stronger result: the monoid
E3 is in fact hereditarily finitely based.

We also ask the following tantalizing question:

Problem 6.4. Is the symmetric inverse semigroup In (n ≥ 2) finitely based

as an inverse semigroup?
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Recall that we have discussed the current state of art around the rela-
tionship between the “inverse” and the “plain” versions of the finite basis
problem for finite semigroups in Section 2. The main result of Kad’ourek
[2003a] readily implies that I2 , I3 , and I4 are nonfinitely based as inverse
semigroups.

We started our story with the 6-element Brandt monoid B1
2 ; let us fin-

ish it by formulating an important open question concerning the 5-element
Brandt semigroup B2 :

Problem 6.5. [Jackson, 2000, Question 4.6] Is the 5-element Brandt semi-

group B2 hereditarily finitely based?

If the answer is “No”, the structure of hereditarily finitely based finite
semigroups would become much clearer. We mention that Jackson [2000]
has shown that the direct product of B2 with the 3-element monoid {1, a, 0}
in which a2 = 0 is not hereditarily finitely based.

Lee [2004] has shown that the answer is “Yes”. Moreover, later Lee [2008]
has shown that even the 5-element semigroup A2 is hereditarily finitely
based. It is known that the variety generated by A2 contains all completely
0-simple combinatorial semigroups, in particular, B2 .
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